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The overrelaxation method is extended to Euler equations for steady transonic flow. The 
method has first order convergence rate. This is illustrated by one- and two-dimensional 
examples. 

INTRODUCTION 

In time marching methods for solving steady transonic Euler equations, the 
unsteady equations are integrated until steady state is reached. This procedure is 
suggested by the hyperbolic character of the system of equations with respect to time. 
The convergence rate of these methods, however, is extremely small. By defining 
convergence rate as the inverse of the number of iterations or time steps necessary to 
damp a perturbation of the steady state a fixed number of magnitudes, this 
convergence rate is found to be of the order of Ax2. Relaxation methods for the 
steady potential equation have by the same definition a convergence rate of the order 
ofdx. Relaxation techniques, however, are not applicable to steady Euler equations 
since in the subsonic parts of the flow field the system of equations has 
simultaneously hyperbolic and elliptic features. 

Overrelaxation to accelerate the convergence of unsteady Euler equations is 
possible since these are uniformally hyperbolic. First attempts to use overrelaxation 
are independently due to Wirz [l] and Desideri and Tannehill [2]. The model 
equation, 

is discretized by Wirz as 

(x/at) + v(ar/ax) = 0 (1) 

f(x, t + At) - <(x, t) + (h/2)(<(x + Ax, t) - C(x - Ax, t)) = 0 (2) 

t(x, t + At) = r, <(x, t + At) + r2&c, t) + (1 - t-1 - r2) 6(x, t) (3) 

A = VAtlAx, < is an artificial state variable. The discretisation of D&id&i and 
Tannehill on (1) has two steps. 
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Downwind: 

qx, t + Z) = <(x, t) - q&x + Ax, t) - m t)>, 

<(x, t + At) = (1 - r,) <(x9 t) + r, <(x, t + Z). 
(4) 

Upwind: 

f(x, t + 22) = lgx, t + At) - A(f(x, t + At) - f(x - Ax, t + At)), 
(5) 

Here again artificial variables are introduced. For both schemes, it can be shown that 
the convergence rate is of the order of dx for an optimal choice of the relaxation 
factors [ 1,2]. A drawback of both schemes is that the number of dependent variables 
is doubled by the use of the artificial state variables. This complicates the 
calculations since these artificial variables have dynamics. They need associated 
boundary conditions and they interact with the natural dependent variables. 

In this article, an overrelaxation method is illustrated which avoids artificial state 
variables by the use of preliminary state variables. These preliminary variables are 
used in the same way as in the classic overrelaxation method for elliptic 
equations [3]. 

DEFINITION OF A RELAXATION METHOD 

We define a relaxation method as a method that fulfills three conditions: 

(1) The Order Condition. In a relaxation method of order N, preliminary 
values <, , &,..., C$ are calculated for the state at level t + At. These are relaxed 
according to 

4Yt + At) = r, tl + r2i2 + . ..+rN&+(1-r.-r2-...-rN)@t). 

(2) The Serial Condition. As soon as the state is calculated in some point 
(x, y, z) on the level t + At, the state at level t and the preliminary values at level t are 
no longer used. 

(3) The Convergence Rate Condition. The asymptotic convergence rate is 
critically dependent upon the relaxation factors r, , r2 ,..., r,. In the vicinity of optimal 
relaxation, the asymptotic convergence rate is O(Ax), elsewhere it is of a higher order. 

According to this definition, the classic relaxation method for the potential 
equation is a first order method when the analogy between iteration levels and time 
levels is used. Through the serial condition, the character of the preliminary variables 
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is different from that of the artificial variables in the previously cited methods. The 
preliminary variables need not be stored and do not introduce extra dynamics into the 
system. 

In the sequel we shall prove that a method which fulfills these conditions can be 
constructed for time dependent equations of hyperbolic type, such as Euler equations. 
This generates a practical overrelaxation method for the solution of the steady from 
of these equations, even when the steady equations have a hybrid and mixed ellip- 
tic-hyperbolic character. The method is therefore applicable to steady transonic Euler 
equations. 

A RELAXATION SCHEME FOR A ONE-DIMENSIONAL TRANSPORT EQUATION 

Equation (1) is generally accepted to be a good linear model for Euler equations if 
V in (1) can have the characteristic velocities of Euler equations. In a one- 
dimensional case these are U, u + c, and u - c. Here u is the convective velocity and c 
is the velocity of sound. Hence in subsonic flow (U < c), V can have both positive and 
negative values. In supersonic flow (U > c), all characteristic velocities are positive. In 
transonia flow, the characteristic velocities can have a varying sign in the flow field. 

First, we remark that it is impossible to construct a stable first order relaxation 
scheme for (l), when V can have both positive and negative values. A general first 
order scheme is 

((x, t + 2) = ((x, t) + A(k<(x - Ax, t + At) + am&x, t f Tt) 
+ PmW, 4 + ax + 4 0) (6) 

withk+m+n=O,a+p=l 

&x, t + At) = rT(x, t + 2) + (1 - I) &x, t). 

This gives 

(1 - aml) c(x, t + dt) = rkJ<(x - Ax, t + At) + (1 - aml+ rml) [(x, t) 

+ rnA~(x + Ax, t). (7) 

This scheme has the general form 

Dr(x, t + At) = A&x -Ax, 1+ At) + B&x, t) + Ct(.x + Ax, 0 (8) 

with 

D= 1 -ad, A = rk& B= 1 -aml+rmL, C = rd. 
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The stability of scheme (8) can be studied by the substitution of a Fourier component 

4(x, t) = d(t) ej”“. 

This gives the amplification factor 

G = @(t + At)/#(t) = ((B + Cej’)/(D - Ae-j@)) (9) 
with 4 = o Ax, 

IGI < 1 if (A + B)(A + C) > 0. (10) 

For the first order scheme, the term A + C is proportional to 1, while A + B 
contains a term independent of ,I. Hence condition (10) cannot be fulfilled for both 
positive and negative values ofl. A stable relaxation scheme, therefore, should have 
at least second order. A general second order scheme is: 

First Preliminary Value: 

t(x, t + xt) = &x, t) + A(k, <(x - Ax, t + At) + a, m, <(xv t + 2) 

+P,mlr(x,t)+n,r(x+Ax,t). 

Second Preliminary Value: 

Qx, t + %) = ((x, t) + I(k,T(x -Ax, t + At) + a,m,~(x, t + 3, 

+P2m2r(x,f+dNt)+y2m2r(x,t)+n2r(x+Ax,t)). 

Relaxation: 

4(x, t + At) = r, <(x, t + 2) + r,&x, t + zt, + (1 - rl - rJ Qx, t). 

This scheme has form (8) with: 

D = (1 - a,m,~)(l - a,m$), 

A = (r,k, + r,k,)A + (r2&m2k, - r,a2m2k, -r,a,m,k,)1*, 

B = 1 + (r,m, t r2m2 - aImI - a,m& 

+ (r2P2m2ml - rla2m2ml -r2a,m,m2 + a,a2m,m2)22, 

C= (r,n, + r2n2)A + (r2P2m2n, -r,a,m,n, -r2a,m,n2)L2. 

(11) 

(12) 

(13) 

The term A + B contains a term independent of ,I. Then A + C can be made propor- 
tional to A2 for 

or 

r,k,+r,k,+r,n,+r,n,=O 

rim, + r2m2 = 0. (14) 
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Condition (14) is a necessary condition to reach stability simultaneously for positive 
and negative L. Among the second order schemes which are stable, schemes in which 
B and C can simultaneously vanish for some value of Iz, are particularly useful. 

For B = C = 0, the amplification factor (9) is identically zero. Perturbations 
transferred with the characteristic velocity corresponding to this value of L then are 
completely damped. A scheme of forms (1 I)-( 13) which has this property, is the 
following downwind-upwind scheme: 

Downwind: 

4(x, t + 2) - q-6 t) 

+ qqx + Ax, t) + aqx, t + iz) - (1 + a) Qx, t)) = 0. 

Upwind: 

Qx, t + 2) - ((4 t) 

(15) 

+ A(a((x, t + 2) + <(x, t + z) - a&x, t) - <(x - Ax, t + At)) = 0. (16) 

In this scheme m, = -1, m2 = 1. Condition (14) is fulfilled with rl = r2 = r/2. Then 
(13) is 

{(x, t + At) = 0.5+3x, t + 3) + <(x, t + 2)) + (1 - r) T(x, t). 

Here r > 1 corresponds to overrelaxation. Equation (17) gives 

<(x, t + At) = RX&r - Ax, t + At) + (1 - RX’) Qx, t) 

+ (-RX + RX’) <(x + Ax, t) 

(17) 

(18) 

with R = 0.5r and X= L/(1 + aL>. Equation (18) has form (8) with 

D= 1, A=RX, B= 1 -RX’, C = -RX + RX’, 

B=C=O for R=l and X=1. 

For R = 1 (r = 2), stability condition (10) gives 

(1 - fi)/2ex (1 + fl)/Z (19) 

X = 1 can correspond to the transfer along u + c. Therefore a and At have to be 
chosen according to 

X+ = (M + l)C,/(l + a(M + l)C,) = 1 (20) 

with C, = cAt/Ax and M = u/c. The X value corresponding to other characteristic 
velocities should fulfill stability requirement (19). 
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In supersonic flow (M > l), the X values corresponding to u and u - c, obviously 
are in the range 0 < X < 1 and automatically satisfy (19). In subsonic flow (M < I), 
the X value corresponding to u - c is negative and has to fulfill 

A combination of 

(1 7/q/2 <x-. (21) 

x- = (M - l)C,/( 1 + cf(M - l)C,) t-221 

and (20) gives 

a= (x- - l)M+X- - 1 
2x- ’ co= ly-;- &. (23) 

Both in subsonic and supersonic flow, the best scheme is reached when At is as large 
as possible. The numerical transfer velocity of perturbations transferred along u and 
u - c is then maximised. 

In subsonic flow, this is reached when X- is as close as possible to stability limit 
(21). In supersonic flow this is reached when X- is as close as possible to 1. In a 
practical scheme for transonic calculations, X- can be chosen according to Fig. 1. 
For M < M, 

x+ = 1, X-=-Q-a=(M-l+QJ/Q,, C, = Q,/( 1 - M’). 

For M > M, 

x+ = 1, 
1 

-+ a = W, - 1 + QJQ,, 

Co = Qo/<<l - Mo)(l + WI, 

with Q, = 2Q/(l + Q). P ossible values are Q = 0.615 and M, = 0.95. 

FIG. 1. Choice of X- for transonic flow. 
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APPLICATION TO ONE-DIMENSIONAL EULER EQUATIONS 

The Euler equations in conservative form are 

$+v. (pV>=O, F+v. (pVV)+Vp=O, W at+v’ (pHv)=O, 

(24) 

The one-dimensional Euler equations are in quasi-linear form 

(x/at) + A *(x/ax) = 0 

with 

and A,= 

The discretisation according to (15), (16) is 

Downwind Step: 

up 00 0 
0 u 0 0 l/p 
oouo 0 
ooou 0 

,o YP 0 0 u 

((x, t + zt) - ((x, t) + A ,(dt/h)(r(x + Ax9 t) - (1 + a) {(x7 t) 

+ a&x, t + Tt)) = 0. (25) 

Upwind Step: 

<(x, t + Tt) - <(x, t) + A l(d t/dx)(&x, t + xt) + a<(x, t + %) 

- a&x, t) - &x -Ax, t + At)) = 0. (26) 

Equations (25), (26) are similar to Eqs. (15), (16) by replacing the scalar V(At/Ax) 
with the matrix A,(At/Ax). This means that all conditions that were imposed on V 
have to be imposed on the eigenvalues of A 1. These are u + c, I(, u - c. Perturbations 
transferred along u + c are then completely damped. The transfer velocity 
corresponding to u - c and u is maximised. In the acoustic movement (u + c and 
u - c), waves travelling to the right are completely damped, waves travelling to the 
left are almost undamped but accelerated. In the convective movement, there is no 
damping. The attainment of the steady state is thus not determined by the internal 
damping but by the expulsion of perturbations along u and u - c. The complete 
damping along u + c is, however, absolutely necessary to avoid reflection along u - c 
at the outflow boundary. Since there is only higher coupling for small perturbations 
between the acoustic movement and the convective movement, there is asymptotically 
no interaction between u and u - c. For a sufficiently long time a perturbation along 
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u and u - c is expulsed in a number of iterations which is proportional to the number 
of elements in the flow field. 

The asymptotic rate of convergence is thus O(dx) since by increasing the number 
of elements in the flow field, the number of iterations necessary to reach a certain 
level of convergence is only linearly increased, when starting from the same initial 
state. The technical application of this scheme to the conservative one-dimensional 
Euler equations is straightforward. The nonlinear equations are linearised to form 
(25 1, (26). 

The state variables at the new time level are iteratively calculated updating A,, 
until the increment of the math number per iteration becomes less than some 
convergence factor C. In the shock region, the usual artificial viscosity is necessary to 
damp the post-shock oscillations. In the momentum equations, a term is added of the 
form 

D, Ax(cY*u/~x*) with D,= O(1). 

The flow is calculated for a nozzle divided in 28 constant Ax segments. The section is 
S, between nodes 1 and 3 and between nodes 21 and 29. Between nodes 3 and 21 the 
section is 

S(i) = S,(O.9 + 0.1 X (2((i - 12)/9)2 - ((i - 12)/9)4)}. 

The outlet pressure is p2 = 0.7 18025 x po, . The exact solution has a shock on 
node 16. The calculation is done with relaxation factor I = 2, damping term in the 
artificial viscosity D, = 0.01, transition math number M, = 0.95, Q = 0.6 15, 
convergence factor C = 0.015. 

Since formulas (23) are very sensitive to the math number, A4 must be multiplied 
by a safety factor S = 0.995 before it is used in (23). Overestimation of A4 causes X- 

.I Norm 

I 

r-2. 

D,=.Ol 

.s 2.995 

cl z.615 

c =.Ol!i 
MO=.95 

100 

FIG. 2. Convergence history for the one-dimensional calculation with 28 elements. 
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TABLE I 

One-Dimensional Calculations for D, = 0.01, S = 0.995, Q = 0.615, C = 0.015, M,* = 0.95 

Number of elements 28 56 84 112 

Optimal relaxation factor 

Field iterations for an 
accuracy 0.01 

Idem for 0.00 1 

Nodal iterations for an 
accuracy 0.01 

Idem for 0.001 

Final accuracy 

2.000 2.000 1.996 1.992 

55 104 153 201 

119 168 218 

1828 6428 13382 23173 

- 1262 14637 25073 

0.0020 1 0.00053 0.00044 0.00027 

to exceed the stability limit X- = -0.618. A convergence norm is calculated as the 
mean absolute deviation in the nodal points between the calculated math number and 
the exact math number. The initial state is a uniform flow with M= 0.6. The 
convergence history for the norm is depicted in Fig. 2. The steady state is reached 
very abruptly. This is due to the expulsion mechanism on which the convergence is 
based. The calculations are repeated for the same geometry but subdivided in 56, 84, 
and I12 elements. The norm is still calculated in the nodal points of the first case. 
The accuracy is defined as the value of the norm. The results are shown in Table I. 
These results clearly show the linear convergence rate. 

. ”  

FIG. 3. Mach number distribution for the one-dimensional calculation with 28 elements. 
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Figure 3 contains the math number distribution for the coarsest grid. The 
algorithm has 6 parameters. Four of them, relaxation factor r, safety factor S, largest 
negative X, and transition math number M, have a universal value. The convergence 
rate increases when these parameters approach their theoretical values r = 2, S = 1, 
X- = -Q = -0.61803, M, = 1. These values cannot be reached for stability reasons. 
Practical values are r = 1.99, S = 0.995, Q = 0.615, M, = 0.95. The convergence 
factor C and the damping factor D, have a problem dependent value. 

The convergence factor should be low enough to ensure sufficient convergence in a 
nodal calculation. Insufficient convergence in a nodal calculation causes instability. 
A convergence factor that is too safe, however, augments the computational effort 
without influencing the convergence rate. A rule of thumb is that after a number of 
field iterations equal to the number of elements in the field, only one iteration is done 
per nodal calculation. The damping factor D, has no influence on the convergence 
rate, but has a detrimental effect on the accuracy. It should be kept as low as 
possible. The necessary value is strongly dependent on the shock strength. 

TWO-DIMENSIONAL APPLICATIONS 

The one-dimensional scheme can immediately be extended to two-dimensional 
applications for line relaxation on a mesh in which the transversal lines are straight 
and parallel. In formulas (23) the math number is to be replaced by the component 
of the math number in the direction perpendicular to the transversal lines. 

The discretisation can easily be done by the finite volume technique. The upwind 
and the downwind volume corresponding to the mesh point (i, j) are depicted in 
Fig. 4. In order to have formal similarity with the one-dimensional algorithm, the 
time derivative term has to be distributed on the points (i + 1, j), (i, j), (i - 1, j) 
proportional to the coefficients of these points for the flux through AB. 

The stability analysis on this two-dimensional discretisation reveals that there is a 
slight instability in the transversal direction. This instability can easily be compen- 

it 

FIG. 4. Upwind and downwind volumes. 
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sated by a small artificial viscosity in this direction. It can, for instance, be done by 
introducing in the momentum equations a corrected viscosity of the form (for the X- 
momentum) 

Here t* is taken to be t + d”t in the downwind step and t + zt in the upwind step. The 
term to is a time level that is fixed for a cycle of N, iterations and renewed after that 
cycle. Then D,, -D,, is sufficiently small. Typical values are D,, = 1, D,, = 0.99. 
With these values the cycle should have approximately as many iterations as there 
are nodes in the transversal direction of the flow field, in order to ensure stability. 
This viscosity mechanism has no influence at all on the convergence rate since the 
convergence is driven by the expulsion mechanism in the longitudinal direction and 
not by the damping mechanism in the transversal direction. 

The same nozzle as was used in the one-dimensional example is subdivided into 
4 X 28 and 8 X 56 elements with constant height on a transversal line. The 
calculation is also done for a discretisation with 8 x 28 and 4 x 56 elements. In the 
first case the width of the nozzle is doubled, in the second case the length is doubled. 
This guarantees that the form of the elements is similar in all calculations. As a 
consequence the optimal values of the problem dependent parameters are equal. 
These parameters are r = 1.99, S = 0.995, Q = 0.615, M, = 0.95, D, = 0.01, D,, = 1, 
D,, = 0.99, C = 0.013. Let N, = 5 when there are 5 nodes in the transversal 
direction. Let N, = 9 when there are 9 nodes. 

The initial state is a uniform flow with M= 0.6, the outflow pressure is 
0.718025 x inlet total pressure. The results are shown in Table II. An equivalent field 

TABLE II 

Two-Dimensional Calculations 

Number of elements 

Final value of the mean 
math number 

Number of field iterations 
for a mean math number = 
0.999 X final value 

Corresponding line 
tield iterations 

Corresponding equivalent 
field iterations 

Final value TJT,,, 

Final value niJti, 

4 x 28 8 x 28 4 x 56 8 x 56 

0.18444 0.78375 0.78860 0.78868 

51 58 132 135 

1742 1764 7483 7207 

64.5 65.3 136.0 131.0 

0.99938 0.99987 0.99954 0.99958 

0.99950 0.99945 0.99953 0.99993 
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iteration is defined as 27 or 55 line iterations. These results clearly show the full 
conservativity of the used finite volume method and the linear convergence rate in Ax. 
They prove that the number of nodes in the transversal direction has no influence at 
all on the convergence rate. 

CONCLUSIONS 

By the preceding theory and computational examples, it is proved that the relax- 
ation method can be extended to Euler equations. This gives a method with 
convergence rate O(Ax). Practical experience reveals that the gain in computational 
effkiency in comparison with time marching techniques with convergence rate 
O(Ax’) is in the order of a factor 6 on a typical 1000 mesh point grid. 
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